Những câu hỏi liên quan
NGUUYỄN NGỌC MINH
Xem chi tiết
Mr Lazy
31 tháng 7 2015 lúc 12:05

Dự đoán dấu "=" khi \(m=n=\frac{1}{\sqrt{2}}\text{ hoặc }=-\frac{1}{\sqrt{2}}\)

Nhận thấy dù m, n âm hay dương trong 2 trường hợp trên thì giá trị P vẫn không đổi.

Ta áp dụng Côsi như sau:

\(\frac{m^2n^2}{m^2+n^2}+k\frac{m^2+n^2}{m^2n^2}+\left(1-k\right)\frac{m^2+m^2}{m^2n^2}\ge2\sqrt{\frac{m^2n^2}{m^2+n^2}.k\frac{m^2+n^2}{m^2.n^2}}+\left(1-k\right)\frac{2mn}{m^2n^2}\)\(\text{(}0

Bình luận (0)
Angela jolie
Xem chi tiết
Nguyễn Hiền Minh
5 tháng 3 2020 lúc 21:46

Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2020 lúc 23:29

\(N=\frac{\left(a-b\right)^2+2ab+1}{a-b}=\frac{\left(a-b\right)^2+9}{a-b}=a-b+\frac{9}{a-b}\ge2\sqrt{\frac{9\left(a-b\right)}{a-b}}=6\)

\(N_{min}=6\) khi \(\left\{{}\begin{matrix}a-b=3\\ab=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

Bình luận (0)
Angela jolie
Xem chi tiết
Lê Anh Duy
1 tháng 2 2020 lúc 15:24

BĐT cộng mẫu số

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1\)

Dấu "=" xảy ra khi x=y=z= 2/3

Bình luận (0)
 Khách vãng lai đã xóa
Ngoc Nhi Tran
Xem chi tiết
Thu Hien Tran
Xem chi tiết
Akai Haruma
17 tháng 7 2019 lúc 17:07

Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)

\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$

Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$

Bình luận (0)
Akai Haruma
17 tháng 7 2019 lúc 17:33

Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)

Áp dụng BĐT Cô-si :

\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)

\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)

Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)

Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Bình luận (0)
Akai Haruma
17 tháng 7 2019 lúc 17:39

Bài 3:

Có: \(a^2+\frac{18}{\sqrt{a}}=\frac{7}{16}a^2+\frac{9}{16}a^2+\frac{18}{\sqrt{a}}\)

Áp dụng BĐT Cô-si:

\(\frac{9}{16}a^2+\frac{18}{\sqrt{a}}\geq 2\sqrt{\frac{9}{16}a^2.\frac{18}{\sqrt{a}}}=\frac{9}{2}\sqrt{2a\sqrt{a}}\geq \frac{9}{2}\sqrt{2.4\sqrt{4}}=18(1)\) do $a\geq 4$

\(\frac{7}{16}a^2\geq \frac{7}{16}.4^2=7(2)\) do $a\geq 4$

Lấy \((1)+(2)\Rightarrow a^2+\frac{18}{\sqrt{a}}\geq 7+18=25\) (đpcm)

Dấu "=" xảy ra khi $a=4$

Bình luận (0)
Cậu bé đz
Xem chi tiết
Witch Rose
12 tháng 3 2019 lúc 0:19

\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)

Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)

\(\Rightarrow VT\ge6=VP\)

Mà GT, VT=VP=6

=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)

=>A=3

Bình luận (0)
Trần baka
12 tháng 3 2019 lúc 0:40

Cái bđt đầu không phải Cô-si vì Cô-si là cho 2 số dương, cái đó là từ hằng đẳng thức mà ra

Ta có : \(\left(m-\frac{1}{m}\right)^2\ge0\)

\(\Leftrightarrow m^2-2+\frac{1}{m^2}\ge0\)

\(\Leftrightarrow m^2+\frac{1}{m^2}\ge2\)

Mấy cái kia làm giống Witch Rose là đc

Bình luận (0)
MT-Forever_Alone
12 tháng 3 2019 lúc 10:50

Trần baka: thế \(m^2\)và \(\frac{1}{m^2}\)không dương à?

Áp dụng BĐT AM-GM ta có:

\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}\ge6.\sqrt[6]{m^2.n^2.p^2.\frac{1}{m^2}.\frac{1}{n^2}.\frac{1}{p^2}}=6\)

...

Bình luận (0)
Nguyễn Thị Hằng
Xem chi tiết
Akai Haruma
30 tháng 4 2019 lúc 0:35

Bài 1:

Áp dụng BĐT AM-GM:

\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)

\(\Rightarrow 4\leq x+y\)

Tiếp tục áp dụng BĐT AM-GM:

\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)

\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)

\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)

Mà:

\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)

\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)

\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)

Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)

Bình luận (5)
Akai Haruma
30 tháng 4 2019 lúc 0:45

Bài 2:

\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)

\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)

\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)

\(\Rightarrow B\geq 24\)

Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)

Bình luận (0)
Akai Haruma
30 tháng 4 2019 lúc 1:01

Bài 3:
Áp dụng BĐT AM-GM cho các số dương ta có:

\(4=2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\geq 4\sqrt[4]{\frac{x^2y^2}{4}}\)

\(\Rightarrow 4\geq x^2y^2\Rightarrow 2\geq xy\geq -2\)

Ta thấy khi $xy$ càng tiến về $0$ và dương thì $C=\frac{1}{xy}$ càng lớn. Do đó $C=\frac{1}{xy}$ không có GTLN.

Bình luận (0)
Angela jolie
Xem chi tiết
Diệu Huyền
3 tháng 2 2020 lúc 10:48

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa